Category Archives: Biomedical Signal Processing

Our Draft Paper made it to the final round!

This evening, we received the news that our Draft Paper submitted on January 7th, was accepted into the 2014 ASEE Annual Conference! This is an admirable milestone achieved by our research group as we are one step closer to a Final Paper acceptance!

We are now working on the revision for the Final Paper that shall be submitted on the 16th of February. Our research group is working harder than ever before to submit a state-of-the-art paper. We appreciate the support, and will provide project updates on a weekly basis.

A timeline of our paper’s journey:

  • October 20, 2013: Abstract submitted
  • November 5, 2013: Abstract accepted/Call for Draft Paper
  • January 7, 2014: Draft Paper submitted
  • February 4, 2014: Draft Paper accepted/Call for Final Paper
  • February 16, 2014: Deadline for Final Paper submission

Using OMAP L-138 Oscilloscope function

So this morning we accomplished some great things in the project. We were able to acquire some sine waves and voice signals, filter them and see their waveform on the screen of a PC. Very exciting!

We are now working on integrating our ECG signal amplifier with this Oscope function in the OMAP, and we wish to have some real-time ECG processing soon.

Below some of the waveforms registered:

Sine Waves
Sine Waves
My voice signal saying "Biomedical"
My voice waveform when saying “Biomedical”

Our ECG Amplifier works!

Last month an important milestone in this project was achieved! The final ECG circuit was finally assembled, specified, and tested! That was the first time we achieved a real-time ECG signal on the screen of our laboratory’s oscilloscope.

You can check out the video of our first ECG signal here (I apologize for the quality of the video, we did not have a good camera to register this moment).

The tutorial for this accomplishment and the steps to reproduce it are listed here. Please feel free to check it out. Any comments and suggestions are welcomed!

A Brief Tutorial for the OMAP L-138

Before continuing this tutorial, please make sure to reflash your OMAP board and to adequately install the Code Composer Studio (CCS).

We assume that you have visited and completed both tutorials listed above. Now, we need to execute a couple steps before connecting your OMAP DSP to your computer. We recommend you to follow the steps below:

  1. Verify that all development board DIP switches (two packages of eight switches, each) are in the “OFF” position. If you look closely, the switch positions are labeled.
  2. Power on the board, connecting the power supply to the 5 V barril (power connector), and turning on the board using the large black slide switch. Three LEDs should now be energized on the development board.
  3. Start up and allow the computer that you installed CCS on to fully finish its boot-up process. Plug the USB cable into the development board and then plug the other end of the cable into your PC. Be sure that you allow the computer to finish loading the device drivers before you move to the next step.
  4. Launch CCS by double clicking on its icon. After a standard CCS install, this icon will be located on your computer’s “desktop”. You are looking for the icon shown below.
CCS icon
CCS icon

Now you have your board set up and ready to run your first code! When the CCS software initialize, you should be able to see a window similar to the one below:

Screen Shot 2013-12-25 at 11.52.33 AM


Important Note: As part of this project, code will be generated and compiled in a nice final folder. All of the codes regarding our work with Biomedical Signal Processing (i.e. the processing and analysis of digitalized biosignals) will be posted in this webpage shortly. At this point, we will keep providing tutorials on the code and examples listed in our text book. This way, you will be familiar with the board and its applications before starting with the analysis of biosignals. For this reason, all the files needed to run and implement the example codes on our text book can be found the the CD that comes with the book.

As explained in the Getting Started with the OMAP L-138 tutorial, we assume that you followed the instructions and have already installed the software that was included on the provided CD- ROM. 

  1. In your computer, use Windows Explorer to verify that the directory common_code exists at C:CDcodecommon_code (please keep in mind that C:CD may be some other name or disk location that you specified when you installed the provided software). If this directory structure does not exist, you either need to create it or install the provided software. There should be several files in the common_code directory. If these files are not already in the directory, they can be copied from the common_code directory of the provided CD-ROM.
  2. Some form of organization is required for your projects and the dozens of files you will eventually create. CCS uses the concept of a workspace to organize groups of projects. A single workspace can be used to manage any number of projects.
  3. If you copied the files from a CD-ROM, the files most likely have a “read-only” attribute. Removing this attribute may prove helpful later in this process.

Installing the Code Composer Studio (CCS)

Please visit the post Getting Started with the OMAP L-138 before continuing with this tutorial! We recommend you to reflash your board before running C code.

Ok, now that you have successfully reflashed your OMAP DSP, we need to move on to the Code Composer Studio tool from Texas Instruments. The Code Composer Studio (CCS) is Texas Instruments’ integrated development environment (IDE) for developing routines on a wide variety of their DSPs. In CCS, the editing, code generation, and debugging tools are all integrated into one unified environment. You can select the target DSP, adjust the optimization parameters, and set the user preferences as you desire.

Let’s get started downloading the CCS. The latest version can be found here. Before allowing you to download the software, TI will ask you for a couple information, including your full name, email, and institution. You will also be required to answer some questions, and shortly after you will be granted the access to download this software.

Access granted! Now you can move on and download the CCS
Access granted! Now you can move on and download the CCS

When being approved to receive the CCS software, click on Download. You will be prompted to select the Processor Architectures to be installed. Please make sure to check the following two options:

  • OMAPL 13x & C6A8 processors; and
  • OMAP Processors.

Screen Shot 2013-12-25 at 11.26.49 AM
When prompted to select the components you wish to install, select all of the boxes. It includes “Compiling Tools, Device Software and Simulators.”

In the next window, make sure to check all the boxes under the JTAG emulator support.

Screen Shot 2013-12-25 at 11.32.06 AM


Click on Next until you see a window similar to the above one. Your CCS is now being installed.

Screen Shot 2013-12-25 at 11.32.36 AM

If prompted about a software license, select the “FREE LICENSE…” option for the time being. This license supports the XDS100 JTAG emulation used on the OMAP-L138 board. Click Finish.

Screen Shot 2013-12-25 at 11.43.26 AM Screen Shot 2013-12-25 at 11.43.33 AM


You have just finished installing CCS. Now let’s move on to the next tutorial, where we will walk you through the settings to run your first code onto the OMAP board.


Getting Started with the OMAP L-138

In this tutorial we will walk through the process of getting started with your OMAP L-138 out of the box and the book Real‐ Time Digital Signal Processing from MATLAB to C with the TMS320C6x DSPs, 2nd Edition (Welch, Wright, and Morrow; CRC 2012).

This book provides a valuable material for the understanding of the OMAP Digital Signal Processor (DSP) and has several examples of both Matlab and C code to implement DSP algorithms. In a further tutorial, we will walk you through the Code Composer Studio (CCS), which is the Texas Instruments’ integrated development environment (IDE) for developing routines on a wide variety of their DSPs. Now, all we want to do is to get your board ready to go and ready to process some digital signals.

To get started with your board, follow these steps:

  1. Unpack the OMAP LCDK. The SD card that comes in the box can be ignored — it contains a Linux OS distribution for use with other applications, not with the WWM book. You can also ignore the Quick Start Guide. Choose the correct power supply connector for your location and snap it into place on the power supply brick. Do not connect power to the LCDK yet. You will also need an XDS100v2 emulator pod (a very small board, sold separately), in addition to the LCDK. Unpack it also.

    XDS100v2 emulator attached to the OMAP DSP (click to enlarge)
    XDS100v2 emulator attached to the OMAP DSP (click to enlarge)
  2. Place the WWM textbook CD in your CD/DVD drive and follow the instructions given by the self‐ installer. The authors of the book recommend that you install all the files; the required disk space is modest.
  3. There is a website where the authors of this book provide updated files. It is a neat source for the latest software updates. After running the CD that comes with the book and installing all the files, please check the book’s website for new updates.
  4. After the WWM textbook CD files and any new files from the web site have been installed, you should have a directory called pc‐apps, and in that directory is a subdirectory called reflashing_OMAPL138_for_winDSK8. Note that this is NOT for the OMAP‐L138 LCDK, but for another board (the Logic PD Zoom Experimenters Kit). Instead, you need to follow the reflashing instructions for the LCDK; this enables use of the winDSK8 application and increases the stability of the LCDK board. For this project, we will use the winDSK8 application in many stages of implementation. Reflashing your OMAP is, therefore, the first step and you should not ignore it.
      1. Note: you need to know the PC’s COM port number for the port to which you have attached the OMAP‐L138 LCDK in order to correctly execute the command to reflash the board. The port number is dependent upon your installation. If you aren’t sure what it is, it can be found several ways, for example by selecting “Devices and Printers” in Windows 7 and looking for the entry for the USB port to which the LCDK is connected. Alternatively, you can start up winDSK8 even before you have reflashed the LCDK (with the LCDK connected directly to your PC via the USB connector J3), and on the main winDSK8 GUI screen, on the right side, you’ll see the choices for COM Port. Click the down arrow for the “COM Port:” list. Typically the highest number listed in the winDSK8 COM port choices is the port the LCDK is using. You may need to click on “Rescan COM Ports” if you’ve changed something since starting winDSK8.
      2. According to the authors, many users have found that the reflashed OMAP‐L138 LCDK is more stable even when running C programs using Code Composer Studio (CCS), so we encourage you to reflash the board before using CCS. This avoids potential issues with Linux kernel conflicts that appear to exist if you do not reflash the board.
      3. We recommend you run winDSK8 at this time, and at least click on the “Get BoardVersion” button, to be sure everything is working properly. When finished with winDSK8 for now, disconnect the LCDK’s USB connector J3 from the PC’s USB port.
  5. Install Code Composer Studio (CCS) software development environment from Texas Instruments. Do not connect the OMAP‐L138 LCDK to the PC (via the small XDS100 emulator pod) until after this installation, or the correct drivers may not be found. A newer version of the CCS may be available online.
      1. Note that a full installation of CCS supports many Texas Instruments processor types. If you choose a custom installation to reduce the disk space requirements, the choice for “Processor Support” depends on what you plan to use with CCS. If you will only use one of the OMAP‐L138 boards (e.g., the LCDK or the Experimenter Kit), you can choose just “OMAP.” If you will also use the C6713 DSK, then also select “C6000 Single Core DSPs.” Similarly, for “Components,” you probably don’t need the C5500 and C5400 compiler tools, if you are trying to conserve disk space.
      2. After CCS is installed, verify that the LCDK board DIP switch SW1 is set with switch 1 OFF and switches 2, 3, 4 and 8 are ON. If you look closely, the switch positions are labeled.
      3. Remove the power connector from the LCDK if you haven’t already. Connect the XDS100v2 emulator pod to the LCDK (either directly or with the short ribbon cable supplied with the XDS100v2 board) using the 14‐pin header J6 on the LCDK. Note the header connection is keyed so that it can only be connected to the pod in the correct orientation. Connect the USB port on the XDS100v2 emulator pod to a USB port on your PC, and the correct drivers should now be found automatically. There is no need to turn the power on to the LCDK for this to occur; the USB port will be recognized.
  6. You are now ready to power up the LCDK again and use both winDSK8 and CCS with the OMAP‐ L138 LCDK, in conjunction with the WWM text. 


Important notes:

  •  If you wish to use winDSK8, be sure that switch SW1 switch 8 is set to ON (and SW1 switches 6 and 7 to the setting for your desired UART port speed; we suggest both switches ON). In this mode of operation, you communicate between your host PC and the OMAP‐L138 LCDK using the J3 UART USB connector on the LCDK.
  • If you want to use CCS and run compiled C programs, you also want to be sure that switch SW1 switch 8 is set to ON, except for the one situation described in the next bulleted item. When using CCS, you communicate between your host PC and the OMAP‐L138 LCDK via the XDS100v2 emulator pod’s USB connector. In this mode of operation, SW1 switches 6 and 7 settings can be read by a user program if desired. If this is your first time using CCS with the LCDK, we highly recommend you now turn to the Appendix A tutorial written for the LCDK and your version of CCS, as found on the www.rt‐ web site. This short document guides you through selecting the license options, creating a simple CCS